Journal of Organometallic Chemistry, 205 (1981) 21-30 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# THE CHEMISTRY AND THE STEREOCHEMISTRY OF POLY(*N*-ALKYLIMINOALANES)

## XVIII \*. THE PREPARATION AND CRYSTAL STRUCTURE OF THE PENTAMER { $(HAIN-i-Pr)_2(H_2AINH-i-Pr)_2[HAINCH(CH_3)CH_2N(CH_3)_2]$ } AND THE CRYSTAL STRUCTURE OF [ $HAIN(CH_2)_3N(CH_3)_2]_6 \cdot 2$ LiH

### G. PEREGO and G. DOZZI

ASSORENI, 20097 San Donato Milanese, Milano (Italy)

(Received June 9th, 1980)

### Summary

The crystal and molecular structures of the pentamer  $\{(HAIN-i-Pr)_2-(H_2AINH-i-Pr)_2[HAINCH(CH_3)CH_2N(CH_3)_2]\}$  (I) and of the hexamer  $[HAIN(CH_2)_3N(CH_3)_2]_6 \cdot 2$  LiH (II) have been determined by direct methods from diffractometer data (Cu- $K_{\alpha}$ ) and refined by block-matrix least-squares to R = 0.052 (I) and 0.084 (II) for 1743 and 1977 independent observations, respectively. The molecular structure of I is built up of four (AIN)\_3 and two (AIN)\_2 rings; the nitrogen atom of the side—N(CH\_3)\_2 group is bonded to an aluminum atom which displays five coordination. The molecular structure of II consists of an "open cage" (AIN)\_6, to which two LiH molecules are linked through Li—H—Al hydrogen bridges; the tetrahedral coordination of Li is completed by a nitrogen atom of the cage and by two nitrogens of the side  $-N(CH_3)_2$  groups. The Al—N bond distances range from 1.859(5) to 2.162(5) Å in I and from 1.845(6) to 1.947(8) Å in II; the overall average Al—N bond lengths, involving four-coordinate atoms only, are 1.916(11), I, and 1.901(13) Å, II.

Crystal data: I, orthorhombic, space group  $P2_12_12_1$ , a = 19.935(6), b = 11.087(2), c = 13.230(3) Å, Z = 4, calcd. density 1.073 g cm<sup>-3</sup>; II, triclinic, space group  $P\overline{1}$ , a = 10.162(5), b = 12.989(4), c = 12.030(5) Å, a = 101.58(4),  $\beta = 118.46(3)$ ,  $\gamma = 109.18(3)$  Å, Z = 1, calcd. density 1.095 g cm<sup>-3</sup>.

## Introduction

In recent years an extensive research program has been implemented on the stereochemistry of poly(N-alkyliminoalanes) (PIA) [1-10], synthesized from

\* For parts I-XVII see refs. 1-11.

SUMMARY OF CRYSTAL DATA

| Molecular formula                                            | {(HAINC <sub>3</sub> H <sub>7</sub> ) <sub>2</sub> (H <sub>2</sub> AINHC <sub>3</sub> H <sub>7</sub> ) <sub>2</sub> -<br>[HAINCH(CH <sub>3</sub> )0H <sub>2</sub> N(CH <sub>3</sub> ) <sub>3</sub> ]} | [HAIN(CH2)3N(CH3)2]6 · 2 LiH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molecular weight                                             | 472.5                                                                                                                                                                                                 | 784.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Space group                                                  | P212121                                                                                                                                                                                               | pī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Molecules/unit cell                                          | 4                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit cell constants (Å, °)                                   | a = 19.935(6), b = 11.087(2),                                                                                                                                                                         | a = 10.162(5), b = 12.989(4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (Mo- $K_{\alpha}$ radiation, $\lambda = 0.71069 \text{ Å}$ ) | c = 13.230(3) Å                                                                                                                                                                                       | c = 12,030(5)  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                              |                                                                                                                                                                                                       | $\alpha = 101.58(4), \beta = 118.46(3),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                              |                                                                                                                                                                                                       | $\gamma = 109.18(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Unit cell volume (Å <sup>3</sup> )                           | 2924.1                                                                                                                                                                                                | 1190,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Calculated density (g cm <sup>-3</sup> )                     | 1,073                                                                                                                                                                                                 | 1.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Linear absorption coefficient $\mu$ (cm <sup>-1</sup> )      | 2.0                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Crystal shape                                                | Irregular                                                                                                                                                                                             | Irregular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Crystal size (approximate) (mm)                              | 0.4 X 0.4 X 0.5                                                                                                                                                                                       | 0,15 X 0,4 X 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                              |                                                                                                                                                                                                       | A CANADA AND AND A CANADA AND AND AND AND AND AND AND AND AN |

primary amines. It has been shown that these PIA are oligomers, mostly with a "closed cage" structure involving a  $H_{act}/Al$  atomic ratio equal to 1.

In contrast, the PIA obtained recently from dimethylamino- or methoxysubstituted primary amines show a tendency to form "open cage" molecular structures [11] ( $H_{act}/Al > 1$ ). New compounds were obtained starting from these primary amines [11], among which the title compounds { $(HAlN-i-Pr)_2$ -( $H_2AlNH-i-Pr)_2[HAINCH(CH_3)N(CH_3)_2]$ } (I) and [ $HAlN(CH_2)_3N(CH_3)_2]_6$ . 2 LiH (II) were isolated in the form of single crystals. I is the first example of PIA containing different substituents at nitrogen atoms in the same molecule; II is the first isolated LiH derivative of an hexamer ( $HAlNR)_6$ . The paper reports the crystal and molecular structures of I and II; the synthesis of I is also described.

## Experimental

### Synthesis

I. A solution of isopropylamine (28.75 mmol) and 2-dimethylamino-isopropylamine (5.75 mmol) in diethyl ether (30 ml) was added dropwise to a stirred solution of AlH<sub>3</sub> (34.5 mmol) in diethyl ether (100 ml) at room temperature. Hydrogen evolution took place immediately. The mixture was stirred for 2 h and traces of solid material filtered off. The residue remaining after the complete evaporation of the solution was redissolved in diethyl ether. This solution was set aside for a day and the crystals were removed, dried and analyzed. (Found: Al, 28.6; N, 17.8%; H<sub>active</sub>, 14.8 meq/g.  $C_{17}H_{49}N_6Al_5$  calcd.: Al, 28.5; N, 17.8%; H<sub>active</sub>, 14.8 meq/g).

II. The preparation of II has been previously reported [11].

## X-ray analysis

Crystals of the title compounds were sealed in thin-walled glass capillaries under an inert gas. The space groups were determined from Weissenberg photographs;  $P\bar{1}$  was assumed for II and the successful refinement confirmed this assignment. Intensities were measured for  $\theta < 25^{\circ}$  (I) and  $\theta < 23^{\circ}$  (II) by a Siemens AED diffractometer, following the  $\theta - 2\theta$  scan method and "fivepoints" technique [12] and using zirconium-filtered Mo- $K_{\alpha}$  radiation. A total of 2897 (I) and 3291 (II) reflections were collected, of which 1743 and 1977, respectively, having  $I > 3 \sigma(I)$ , were used in the structure determinations. No absorption correction was necessary. The main crystal data are listed in Table 1.

## Structure determination and refinement

The structure of both compounds was solved with the MULTAN program [13], using 130 reflections with E > 1.7 (I) and 170 reflections with E > 1.8 (II) for phase generation.

The lithium and hydrogen atoms were located from  $\Delta F$  maps; the positions of the hydrogen atoms not clearly evident from these maps were calculated according to the expected geometry. Block-matrix least-squares refinement

| Arom             | x        | У        | z        | <sup>B</sup> 11      | <sup>B</sup> 22      | <sup>B</sup> 33 | <sup>B</sup> 12 | <sup>B</sup> 13      | <sup>B</sup> 23          |
|------------------|----------|----------|----------|----------------------|----------------------|-----------------|-----------------|----------------------|--------------------------|
| AI(1)            | 2210(1)  | 3153(2)  | 6116(1)  | 32(1)                | 37(1)                | 38(1)           | 1(1)            | -2(1)                | -1(1)                    |
| AI(2)            | 2066(1)  | 541(2)   | 5009(1)  | 41(1)                | 39(1)                | 51(1)           | 6(1)            | 3(1)                 | -6(1)                    |
| A1(3)            | 965(1)   | 2075(2)  | 6061(1)  | 29(1)                | 48(1)                | 42(1)           | -5(1)           | 13(1)                | -1(2)                    |
| Al(4)            | 1772(1)  | 3081(2)  | 4168(1)  | 39(1)                | 44(1)                | 34(1)           | -10(1)          | -2(1)                | 13(1)                    |
| AL(5)            | 671(1)   | 1034(2)  | 3971(2)  | 37(1)                | 70(1)                | 49(1)           | -24(2)          | -10(2)               | -27(2)                   |
| N(1)             | 2390(2)  | 2166(4)  | 4932(3)  | 25(2)                | 44(2)                | 37(2)           | -4(3)           | 2(3)                 | -12(4)                   |
| N(2)             | 3256(2)  | 2817(5)  | 6441(4)  | 34(2)                | 56(3)                | 62(3)           | 1(4)            | -17(4)               | -22(5)                   |
| N(3)             | 1296(2)  | 3403(4)  | 5363(4)  | 33(2)                | 43(2)                | 37(2)           | 9(3)            | -6(3)                | 5(3)                     |
| N(4)             | 1711(2)  | 2120(4)  | 7034(3)  | 43(2)                | 43(2)                | 35(2)           | 14(4)           | 3(3)                 | 6(4)                     |
| N(5)             | 1335(2)  | 1993(5)  | 3241(3)  | 40(2)                | 54(3)                | 38(2)           | -8(4)           | -11(3)               | -2(4)                    |
| N(6)             | 1115(2)  | 690(4)   | 5234(4)  | 38(2)                | 43(2)                | 48(2)           | -19(4)          | - 16(4)              | -3(4)                    |
| C(1)             | 3132(3)  | 2064(6)  | 4697(5)  | 39(3)                | 52(3)                | 56(3)           | 12(5)           | 15(4)                | 4(6)                     |
| C(2)             | 3291(3)  | 2311(8)  | 3606(6)  | 42(3)                | 104(5)               | 59(4)           | -6(7)           | 36(5)                | -10(8)                   |
| C(3)             | 3495(3)  | 2926(6)  | 5368(5)  | 24(2)                | 64(3)                | 67(4)           | -14(5)          | 1(4)                 | -21(7)                   |
| 0(4)             | 3442(4)  | 1670(8)  | 6883(6)  | 60(4)                | 86(5)                | 62(4)           | 40(7)           | -31(6)               | -11(8)                   |
|                  | 3568(3)  | 3805(9)  | 7031(7)  | 39(3)                | 110(6)               | 93(5)           | -19(7)          | -30(7)               | -89(10)                  |
| C(6)             | 978(3)   | 4633(5)  | 5408(5)  | 54(3)                | 40(3)                | 46(3)           | 29(5)           | 1(5)                 | 7(5)                     |
|                  | /91(4)   | 4984(7)  | 6465(6)  | 68(4)                | 58(4)                | 67(4)           | 56(6)           | 14(6)                | -18(7)                   |
| C(8)             | 377(5)   | 4710(8)  | 4743(8)  | 99(6)                | 78(5)                | 105(6)          | 108(9)          | -59(10)              | -6(10)                   |
| C(10)            | 2085(4)  | 2001(0)  | 8649(5)  | J7(3)<br>01(5)       | 02(5)                | 31(3)           | 10(0)           | 19(3)                | 8(5)                     |
| C(10)            | 119/(4)  | 1523(8)  | 8647(5)  | 91(3)                | 92(3)                | 43(3)           | -31(10)         | 11(7)                | -36(8)                   |
| C(12)            | 1134(4)  | 2592(9)  | 2284/(5) | 79(4)                | 104(4)               | 43(4)           | 10(7)           | 22(6)                | 19(0)                    |
| C(12)            | 1726(5)  | 2781(0)  | 2204(3)  | 100(5)               | 104(6)               | 37(3)           | -19(3)          | -19(0)               | -3(7)                    |
| C(14)            | 575(5)   | 1999(13) | 1750(7)  | 84(5)                | 185(9)               | 67(5)           | -77(14)         | -/0(8)               | 51(12)                   |
| C(15)            | 866(4)   | -446(7)  | 5747(6)  | 76(4)                | 56(4)                | 76(5)           | -53(7)          | -49(0)               | -17(7)                   |
| C(16)            | 1120(5)  | -1570(7) | 5319(9)  | 125(7)               | 61(4)                | 108(7)          | -65(10)         | /9(12)               | -4(9)                    |
| C(17)            | 107(5)   | -500(9)  | 5776(8)  | 91(5)                | 92(5)                | 99(6)           | -77(10)         | 57(10)               | -30(11)                  |
|                  |          |          |          |                      |                      |                 |                 |                      |                          |
| Atom             | ×        | У        | z        | В                    | Atom                 | x               | У               | z                    | В                        |
| H(All)           | 2301(22) | 4280(43) | 6259(34) | 3(1)                 | н'(с8)               | 506(30)         | 4504(55         | 5) 4139              | (48) 7(2)                |
| H'(Al2)          | 2219(26) | -32(49)  | 4190(42) | 5(1)                 | н''(с8)              | 268(26)         | 5544(48         | 3) 4713              | (42) 6(1)                |
| H''(Al2)         | 2407(28) | -74(51)  | 5804(42) | 5(1)                 | н'''(С8)             | 84(28)          | 4054(54         | ) 5085               | (48) 7(2)                |
| H(A13)           | 262(26)  | 1950(53) | 6645(41) | 5(1)                 | H(C9)                | 1104(33)        | 3194(69         | <b>)</b> 7904        | (58) 10(2)               |
| H(A14)           | 1962(39) | 4343(80) | 3729(62) | 12(3)                | H'(C10)              | 2262(32)        | 3932(62         | 2) 8336              | (51) 8(2)                |
| H'(AIS)          | 140(31)  | 1885(61) | 4199(51) | 7(2)                 | H''(C10)             | 2325(34)        | 2459(58         | 8) 8804              | (53) 9(2)                |
| H. (ALS)         | 615(34)  | -105(60) | 3446(54) | 8(2)                 | H'''(C10)            | 1905(35)        | 3452(65         | ) 9175               | (56) 11(2)               |
| H(N4)            | 1677(30) | 1437(37) | 7316(48) | (2)                  | $H^{\circ}(C11)$     | 804(28)         | 1056(56         | 8248                 | (47) 7(2)                |
|                  | 2220(22) | 1347(30) | 3134(44) |                      |                      | 1029(26)        | 1/36(48         | 9450                 | (41)  5(1)               |
|                  | 3329(23) | 1231(39) | 4814(33) | 3(10)                | H. (C11)             | 1494(29)        | 928(54          | 87370                | (46) 7(2)                |
|                  | 3087(23) | 1/31(43) | 3137(37) | 3(1)                 | H(CIZ)               | 848(33)         | 3402(61         | ) 2460               | (53) 9(2)                |
|                  | 3132(37) | 2332(00) | 2512(29) | $\frac{12(2)}{6(2)}$ |                      | 2120(29)        | 3158(57         | ) 19670              | (45)  6(2)               |
|                  | 3030(26) | 2602(66) | 5367(44) | 5(1)                 |                      | 1393(29)        | 3088(33         | 948                  | (48)  6(1)               |
|                  | 3503(25) | 2070(40) | 5202(42) | 2(1)                 | H <sup>1</sup> (C14) | 1933(27)        | 1915(55         | 1368                 | (41)  5(1)               |
| 4 (C2)<br>4'(C4) | 3217(26) | 1015(50) | 6517(41) | 4(1)                 | H'(C14)              | 204(32)         | 1/8/(6)         | () 21410<br>() 15910 | (54) 8(2)<br>(58) 11(3)  |
| H''(C4)          | 3302(29) | 1678(52) | 7572(44) | 6(2)                 | H'''(C14)            | 444(37)         | 2374/50         | 12714                | (50) L1(2)<br>(58) 10(2) |
| 1'''(C4)         | 3959(33) | 1528(62) | 6981(57) | 10(2)                | H(C15)               | 977(28)         | -554(54         | ) 6560/              | (2) (2)                  |
| 1'(c5)           | 3332(37) | 4673(65) | 6744(57) | 11(2)                | H'(C16)              | 1529(37)        | -1619/61        | ) 53244              | (55) 10(1)               |
| 1''(C5)          | 4042(30) | 3727(59) | 7178(54) | 8(2)                 | H''(C16)             | 1018(37)        | -1748(57        | ) 46854              | (52) 8(7)                |
| H'''(C5)         | 3401(32) | 3662(57) | 7815(50) | 7(2)                 | H'''(C16)            | 904(39)         | -2299(69        | 56910                | 61) 12(2)                |
| I(C6)            | 1360(27) | 5272(47) | 5224(42) | 5(1)                 | H'(C17)              | -105(24)        | 240(46          | ) 59470              | (43) 5(1)                |
| 4'(C7)           | 1147(27) | 5052(52) | 6855(46) | 5(2)                 | H''(C17)             | 28(39)          | -1247(72        | ) 6329(              | 65) 13(3)                |
| <b>יי:</b> (C7)  | 490(30)  | 4343(56) | 6798(46) | 6(2)                 | H'''(C17)            | -2(26)          | -571(48         | > 50890              | (43) 5(1)                |
| i'''(C7)         | 645(27)  | 5764(52) | 6476(42) | 5(1)                 |                      |                 |                 |                      |                          |

atomic fractional coordinates (X  $10^4$  ) and thermal parameters  $^a$  (X 10 for non-hydrogen atoms) for compound 1

<sup>a</sup> Anisotropic thermal factor defined by  $\exp -\frac{1}{4(B_{11}a^{*2}h^2 + B_{22}b^{*2}k^2 + B_{33}c^{*2}l^2 + B_{12}a^{*}b^{*}hk + B_{13}a^{*}c^{*}hl + B_{23}b^{*}c^{*}kl)$ .

were applied, the function minimized being  $\Sigma w(F_0 - F_c)^2$  with Cruickshank's weighting scheme [14].

Anisotropic refinement for non-hydrogen atoms and isotropic refinement for hydrogens were performed for I; the final R factor was 0.052. For II, the

TABLE 2

| Atom  | x         | у         | 2         | B <sub>11</sub> | <sup>B</sup> 22 | <sup>B</sup> 33 | <sup>B</sup> 12 | <sup>B</sup> 13 | <sup>B</sup> 23 |
|-------|-----------|-----------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Al(1) | 3235(2)   | 5757(2)   | -1495(2)  | 31(1)           | 28(1)           | 34(1)           | 38(1)           | 44(1)           | 40(1)           |
| A1(2) | 4152(2)   | 5137(2)   | 1198(2)   | 31(1)           | 29(1)           | 32(1)           | 36(1)           | 48(1)           | 36(1)           |
| A1(3) | 7194(2)   | 6726(2)   | 1193(2)   | 28(1)           | 25(1)           | 30(1)           | 27(1)           | 40(1)           | 33(1)           |
| N(1)  | 2541(6)   | 4677(4)   | -785(5)   | 29(2)           | 34(2)           | 37(2)           | 41(4)           | 50(4)           | 42(4)           |
| C(1)  | 864(8)    | 4521(6)   | -1048(8)  | 27(3)           | 46(3)           | 50(4)           | 35(5)           | 51(6)           | 54(6)           |
| C(2)  | -611(9)   | 4107(7)   | -2558(8)  | 34(3)           | 68(4)           | 60(4)           | 66(7)           | 60(7)           | 78(7)           |
| C(3)  | -1422(9)  | 2809(7)   | -3535(9)  | 32(3)           | 63(4)           | 59(4)           | 42(6)           | 50(6)           | 76(7)           |
| N(2)  | -927(7)   | 2559(5)   | -4492(6)  | 36(3)           | 39(3)           | 41(3)           | 28(5)           | 27(5)           | 40(5)           |
| C(4)  | -1612(12) | 1277(8)   | -5173(10) | 60(5)           | 50(4)           | 66(5)           | 43(8)           | 52(9)           | 46(8)           |
| C(5)  | -1672(11) | 3003(9)   | -5569(10) | 55(4)           | 83(6)           | 60(5)           | 71(9)           | 53(8)           | 85(9)           |
| N(3)  | 6228(6)   | 6546(4)   | 2156(5)   | 38(2)           | 26(2)           | 32(2)           | 38(4)           | 51(4)           | 36(4)           |
| C(6)  | 6300(12)  | 7695(7)   | 2837(9)   | 96(6)           | 42(4)           | 77(5)           | 94(8)           | 140(10)         | 73(7)           |
| C(7)  | 6060(15)  | 7807(9)   | 3952(10)  | 136(8)          | 88(6)           | 57(5)           | 175(13)         | 131(11)         | 63(9)           |
| C(8)  | 6462(18)  | 7170(15)  | 4817(11)  | 133(9)          | 219(14)         | 64(6)           | 229(19)         | 161(14)         | 130(15)         |
| N(4)  | 8021(10)  | 7170(7)   | 5497(7)   | 84(4)           | 72(4)           | 37(3)           | 95(7)           | 75(6)           | 49(6)           |
| N(5)  | 5569(6)   | 6255(4)   | -755(5)   | 33(2)           | 28(2)           | 31(2)           | 34(4)           | 48(4)           | 43(4)           |
| C(11) | 6168(8)   | 7083(6)   | -1314(7)  | 47(3)           | 32(3)           | 39(3)           | 39(5)           | 60(6)           | 56(5)           |
| C(12) | 6343(10)  | 8304(6)   | -789(8)   | 62(4)           | 35(3)           | 52(4)           | 44(6)           | 88(7)           | 58(6)           |
| C(13) | 7054(10)  | 9142(7)   | -1328(9)  | 59(4)           | 46(4)           | 81(5)           | 60(7)           | 101(8)          | 100(8)          |
| N(6)  | 7563(12)  | 10423(8)  | -558(11)  | 114(6)          | 74(5)           | 152(7)          | 84(9)           | 194(12)         | 178(11)         |
| Atom  | ×         | y         | 2         | в               | Atom            | x               | ÿ               | 2               | 3               |
| C(9)  | 7931(29)  | 6361(19)  | 6018(24)  | 185(7)          | H'(Al1)         | 2301(81)        | 5060(58         | ) -3057(        | 68) 5(1)        |
| C(10) | 9229(27)  | 8214(18)  | 6707(22)  | 171(6)          | H''(All)        | 2766(68)        | 6743(48         | ) -1212(        | 56) 3(1)        |
| C(14) | 6331(19)  | 10591(13) | -710(16)  | 117(4)          | H(A12)          | 3125(74)        | 5054(52         | ) 1776(         | 61) 4(1)        |
| C(15) | 8375(23)  | 11165(16) | -1055(19) | 143(5)          | H(A13)          | 8707 (70)       | 7923(49         | ) 1896(         | 58) 3(1)        |
| Li    | 8279(15)  | 6593(11)  | 3866(12)  | 41(2)           |                 |                 |                 |                 |                 |

## Atomic fractional coordinates (X 10<sup>4</sup>) and thermal parameters $^{a}$ (X 10 for non-hydrogen atoms) for compound 11

<sup>a</sup> See footnote to Table 2.

lithium atom and some methyl carbon atoms were left isotropic; only the hydridic hydrogens were refined, the contributions of the other hydrogens having been fixed during the refinement, with isotropic thermal parameters equal to those of the related carbon atoms. The final R factor was 0.084.

The atomic scattering factors were from Cromer and Mann [15] for non-hydrogen and from Stewart et al. [16] for hydrogen. With the exception of MULTAN and ORTEP [17], all the computer programs were written by Immirzi [18].

A list of structure factors may be obtained from the authors on request.

## **Results and discussion**

The molecular structure of I (see Figure 1) is built up of a six-membered ring,  $(AlN)_3$  [formed by Al(2), N(1), Al(4), N(3), Al(3) and N(6)], crossed by a -H<sub>2</sub>AlNH-i-Pr- unit on one side and by a -HAlNH-i-Pr- unit on the other. The Al(1) atom of the latter bridging unit is connected to two nitrogen atoms of the main  $(AlN)_3$  ring, so that three secondary six-membered rings,  $(AlN)_3$ , and two four-membered rings,  $(AlN)_2$  are formed. Both the main and the secondary  $(AlN)_3$  rings display a "skew-boat" conformation; significant deviations



Fig. 1. A perspective view and labelling scheme for the molecule of compound I. For clarity, the isopropyl carbon atoms have been omitted in the view of the molecular structure.



Fig. 2. A perspective view and labelling scheme for the molecule of compound II.

| CALCULATED FRACTIONAL COORDINATES (X 10 | 1 <sup>4</sup> ) OF | 'NON-HYDRIDIC HYDROGEN | ATOMS |
|-----------------------------------------|---------------------|------------------------|-------|
| OF COMPOUND II                          |                     |                        |       |

| Atom      | x      | У      | z     |
|-----------|--------|--------|-------|
| H'(C1)    | 528    | 3979   | -646  |
| H"(C1)    | 1166   | 5376   | -439  |
| H'(C2)    | -1531  | 4254   | -2591 |
| H"(C2)    | 154    | 4611   | -2978 |
| H'(C3)    | -1198  | 2344   | -2973 |
| H"(C3)    | 2741   | 2470   | -4169 |
| H'(C4)    | -1275  | 1108   | 5820  |
| H"(C4)    |        | 855    | -5723 |
| H'''(C4)  | -1136  | 976    | -4451 |
| H'(C5)    | -1345  | 2845   | -6222 |
| H"(C5)    | -1206  | 3890   | -5091 |
| H'''C(5)  |        | 2572   | 6104  |
| H'(C6)    | 7426   | 8396   | 3223  |
| H"(C6)    | 5354   | 7781   | 2061  |
| H'(C7)    | 6784   | 8668   | 4637  |
| H"(C7)    | 4796   | 7577   | 3496  |
| H'(C8)    | 6179   | 7413   | 5520  |
| H"(C8)    | 5468   | 6250   | 4150  |
| H'(C9)    | 9092   | 6410   | 6529  |
| H"(C9)    | 7040   | 5564   | 5268  |
| H'''(C9)  | 7687   | 6597   | 6719  |
| H'(C10)   | 10 357 | 8252   | 7183  |
| H"(C10)   | 8843   | 8287   | 7313  |
| H'''(C10) | 9342   | 8924   | 6428  |
| H'(C11)   | 7342   | 7213   | -1041 |
| H"(C11)   | 5350   | 6677   | 2358  |
| H'(C12)   | 5172   | 8189   | -1128 |
| H"(C12)   | 7125   | 8704   | 240   |
| H'(C13)   | 8024   | 9030   | -1300 |
| H''(C13)  | 6119   | 8853   | -2363 |
| H'(C14)   | 6795   | 11 466 |       |
| H''(C14)  | 5764   | 10.089 | -387  |
| H'''(C14) | 5498   | 10 357 | -1727 |
| H'(C15)   | 8770   | 12 035 | -509  |
| H"(C15)   | 7539   | 10 898 | -2054 |
| H"'(C15)  | 9413   | 11 099 | -865  |
|           |        |        |       |

from planarity are observed in the  $(AIN)_2$  rings (see Table 5).

Aluminum and nitrogen atoms show tetrahedral coordination except for Al(1), which is five-coordinate with a distorted trigonal bipyramidal geometry; the five-coordination is reached by means of the nitrogen, N(2), belonging to the  $-CH(CH_3)CH_2N(CH_3)_2$  substituent, which in turn achieves four-coordination.

The Ni(1) and N(4) atoms, which are bonded to the five-coordinate Al(1) atom and lie in the equatorial positions, display Al—N bond distances (1.954(5) and 1.943(5) Å, respectively) which are shorter than those related to the axially-bonded N(2) and N(3) (2.162(5) and 2.095(5) Å, respectively). The values of the remaining Al—N bond lengths are spread over the range 1.859-1.968 Å, as already found in other PIA with an irregular framework structure [3,4].

The molecular structure of II consists of a "open cage" framework (AlN)<sub>6</sub> with a crystallographic  $\overline{1}$  symmetry, see Figure 2. This framework structure can

### **GEOMETRICAL PARAMETER FOR COMPOUND I**

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 503(10  |
| $ \begin{array}{c} A1(1)-N(3) & 2.095(5) & A1(3)-N(6) & 1.930(5) & C(6)-C(7) & 1.2 \\ A1(1)-X(4) & 1.943(5) & N(1)-C(1) & 1.514(7) & C(6)-C(8) & 1.4 \\ A1(2)-X(6) & 1.925(5) & N(2)-C(3) & 1.503(9) & C(9)-C(10) & 1.5 \\ A1(2)-X(6) & 1.925(5) & N(2)-C(3) & 1.481(10) & C(9)-C(11) & 1.5 \\ A1(3)-X(6) & 1.959(5) & N(2)-C(5) & 1.481(10) & C(12)-C(13) & 1.4 \\ A1(3)-X(6) & 1.910(5) & N(4)-C(9) & 1.512(8) & C(13)-C(16) & 1.4 \\ A1(3)-X(6) & 1.910(5) & N(4)-C(9) & 1.512(8) & C(13)-C(16) & 1.4 \\ A1(3)-X(6) & 1.910(5) & N(6)-C(15) & 1.480(9) & C(15)-C(17) & 1.5 \\ A1(4)-X(1) & 1.889(4) & N(5)-C(12) & 1.480(9) & C(15)-C(17) & 1.5 \\ A1(4)-X(3) & 1.879(5) & N(6)-C(15) & 1.515(9) & \\ A1(1)-H(A11) & 1.28(5) & A1(3)-H(A13) & 1.61(5) & A1(5)-H''(A15) & 1.4 \\ A1(2)-H''(A12) & 1.29(5) & A1(4)-H(A14) & 1.56(9) & N(4)-H(N4) & 0.9 \\ A1(2)-H''(A12) & 1.43(5) & A1(3)-H'(A15) & 1.45(6) & N(5)-H(N5) & 0.7 \\ N(1)-A1(1)-N(2) & 83.4(1) & N(1)-A1(1)-N(3) & 81.5(1) & N(1)-A1(1)-N(4) & 105 \\ N(2)-A1(1)-X(3) & 163.0(4) & N(2)-A1(1)-N(4) & 105.5(1) & N(3)-A1(1)-X(6) & 86 \\ N(1)-A1(2)-N(6) & 105.0(1) & N(3)-A1(3)-N(4) & 92.1(1) & N(3)-A1(3)-X(6) & 107 \\ N(3)-A1(3)-X(6) & 105.0(1) & N(3)-A1(3)-N(6) & 102.9(1) & \\ A1(1)-N(1)-A1(2) & 115.1(1) & A1(1)-N(1)-A1(4) & 90.5(1) & A1(1)-N(1)-C(1) & 112 \\ A1(2)-N(1)-A1(4) & 108.2(1) & A1(2)-N(6) & 102.9(1) & \\ A1(1)-N(2)-C(3) & 96.0(2) & A1(1)-N(2)-C(4) & 118.6(4) & A1(1)-N(2)-C(5) & 107 \\ N(3)-A1(3)-X(3) & 48.1(1) & A1(2)-N(3)-C(6) & 117.9(3) & A1(3)-N(6) & 107 \\ N(3)-A1(3)-X(3) & 88.1(1) & A1(1)-N(3)-C(6) & 117.9(3) & A1(3)-N(3)-A1(4) & 86 \\ A1(1)-N(2)-C(3) & 96.0(2) & A1(1)-N(2)-C(4) & 118.6(4) & A1(1)-N(3)-A1(4) & 86 \\ A1(1)-N(2)-C(3) & 96.0(2) & A1(1)-N(2)-C(6) & 117.9(3) & A1(3)-N(3)-A1(4) & 86 \\ A1(1)-N(2)-C(3) & 96.0(2) & A1(1)-N(3)-C(6) & 117.9(3) & A1(3)-N(3)-A1(4) & 86 \\ A1(1)-N(4)-A1(3) & 89.6(1) & A1(1)-N(3)-C(6) & 117.9(3) & A1(3)-N(4)-C(9) & 113 \\ A1(4)-N(5)-A1(5) & 109.4(1) & A1(4)-N(5)-C(12) & 113.0(3) & A1(5)-N(6)-C(15) & 113.\\ A1(2)-N(6)-A1(3) & 105.4(1) & A1(2)-N(6)-C(15) & 111.1(3) & A1(5)-N(6)-C(15) & 11$                                                                                                              | 707(10  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500(10  |
| $\begin{array}{c} A1(2)-K(1) & 1.918(5) & K(2)-C(3) & 1.2017(2) & C(3)-C(10) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) & 1.2017(2) $                                                                                                                                         | / 90(10 |
| $\begin{array}{c} A1(2) - K(2) & 112-0(2) & 112-0(2) & 112-0(3) & (12) - C(13) & 112-0(3) & (12) - C(13) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112-0(3) & 112$                                                                                                                                         | 517/11  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 507(10  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /00/(10 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 499(11  |
| $\begin{array}{c} A1(4)-N(1) & 1.889(4) & N(5)-C(12) & 1.480(9) & C(15)-C(17) & 1.5\\ A1(4)-N(3) & 1.879(5) & N(6)-C(15) & 1.515(9) & \\ A1(1)-H(A11) & 1.28(5) & A1(3)-H(A13) & 1.61(5) & A1(5)-H''(A15) & 1.4\\ A1(2)-H'(A12) & 1.29(5) & A1(4)-H(A14) & 1.56(9) & N(4)-H(N4) & 0.9\\ A1(2)-H''(A12) & 1.43(5) & A1(5)-H'(A15) & 1.45(6) & N(5)-H(N5) & 0.7\\ N(1)-A1(1)-N(2) & 83.4(1) & N(1)-A1(1)-N(3) & 81.5(1) & N(1)-A1(1)-N(4) & 105\\ N(2)-A1(1)-N(3) & 163.0(4) & N(2)-A1(1)-N(4) & 105.5(1) & N(3)-A1(1)-N(4) & 86\\ N(1)-A1(2)-N(6) & 105.0(1) & N(3)-A1(3)-N(4) & 92.1(1) & N(3)-A1(3)-N(6) & 107\\ N(4)-A1(3)-N(6) & 106.1(1) & N(1)-A1(4)-N(3) & 88.9(1) & N(1)-A1(4)-N(5) & 107\\ N(3)-A1(4)-N(5) & 115.2(1) & N(5)-A1(5)-N(6) & 102.9(1) & \\ A1(1)-N(1)-A1(2) & 15.1(1) & A1(1)-N(1)-C(1) & 115.7(2) & A1(4)-N(1)-C(1) & 112\\ A1(2)-N(1)-A1(4) & 108.2(1) & A1(2)-N(1)-C(1) & 105.7(2) & A1(4)-N(1)-C(1) & 112\\ A1(2)-N(2)-C(3) & 96.0(2) & A1(1)-N(2)-C(4) & 118.6(4) & A1(1)-N(2)-C(5) & 112\\ C(3)-N(2)-C(4) & 111.8(3) & C(3)-N(2)-C(5) & 107.8(3) & C(4)-N(2)-C(5) & 109.4(4) & 116\\ A1(3)-N(3)-C(6) & 123.3(3) & A1(4)-N(3)-C(6) & 114.7(2) & A1(1)-N(3)-A1(4) & 86.1(1) & A1(1)-N(3)-C(6) & 114.7(2) & A1(1)-N(3)-A1(4) & 166\\ A1(3)-N(3)-C(6) & 123.3(3) & A1(4)-N(3)-C(6) & 114.7(2) & A1(1)-N(3)-A1(4) & 86.1(1) & A1(1)-N(5)-C(12) & 113.0(3) & A1(3)-N(4)-C(9) & 113.4(4)-N(5)-C(12) & 113.4(4)-N(6)-C(15) & 111.4(3)-N(6)-C(15) & 113.4(4)-N(6)-C(15) & 111.4(3)-N(6)-C(15) & 113.4(4)-N(6)-C(15) & 1113.4(5)-N(6)-C(15) & 113.4(5)-N(6)-C(15) & 113.4(5)-N(6)-C(15)$                                                                                                                          | 407(13  |
| $\begin{array}{c} A1(4)-N(3) \\ A1(4)-N(3) \\ A1(4)-N(3) \\ A1(1)-H(A11) \\ A1(2)-H'(A12) \\ A1(2)-H'(A12) \\ A1(2)-H'(A12) \\ A1(3)-H(A13) \\ A1(3)-H(A13) \\ A1(3)-H(A14) \\ A1(2)-H'(A12) \\ A1(2)-H'(A12) \\ A1(3)-H(A12) \\ A1(1)-H(A12) \\ A1(2)-H(A12) \\ $ | 515(12  |
| $\begin{array}{c} Al(1)-H(Al1) & 1.28(5) & Al(3)-H(Al3) & 1.61(5) & Al(5)-H''(Al5) & 1.4\\ Al(2)-H'(Al2) & 1.29(5) & Al(4)-H(Al4) & 1.56(9) & N(4)-H(N4) & 0.9\\ Al(2)-H''(Al2) & 1.43(5) & Al(5)-H'(Al5) & 1.45(6) & N(5)-H(N5) & 0.7\\ N(1)-Al(1)-N(2) & 83.4(1) & N(1)-Al(1)-N(3) & 81.5(1) & N(1)-Al(1)-N(4) & 105\\ N(2)-Al(1)-N(3) & 163.0(4) & N(2)-Al(1)-N(4) & 105.5(1) & N(3)-Al(1)-N(4) & 86\\ N(1)-Al(2)-N(6) & 105.0(1) & N(3)-Al(3)-N(4) & 92.1(1) & N(3)-Al(3)-N(6) & 107\\ N(4)-Al(3)-N(6) & 106.1(1) & N(1)-Al(4)-N(3) & 88.9(1) & N(1)-Al(4)-N(5) & 107\\ N(3)-Al(4)-N(5) & 115.2(1) & N(5)-Al(5)-N(6) & 102.9(1) & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /1/(12  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45(7)   |
| $\begin{array}{c} Al(2)-H^{++}(Al2) & 1.43(5) & Al(5)-H^{+}(Al5) & 1.45(6) & N(5)-H(N5) & 0.7 \\ Al(2)-H^{++}(Al2) & 1.43(5) & Al(5)-H^{+}(Al5) & 1.45(6) & N(5)-H(N5) & 0.7 \\ N(1)-Al(1)-N(2) & 83.4(1) & N(1)-Al(1)-N(3) & 81.5(1) & N(1)-Al(1)-N(4) & 105 \\ N(2)-Al(1)-N(3) & 163.0(4) & N(2)-Al(1)-N(4) & 105.5(1) & N(3)-Al(1)-N(4) & 86 \\ N(1)-Al(2)-N(6) & 105.0(1) & N(3)-Al(3)-N(4) & 92.1(1) & N(3)-Al(3)-N(6) & 107 \\ N(4)-Al(3)-N(6) & 106.1(1) & N(1)-Al(4)-N(3) & 88.9(1) & N(1)-Al(4)-N(5) & 107 \\ N(3)-Al(4)-N(5) & 115.2(1) & N(5)-Al(5)-N(6) & 102.9(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21(6)   |
| $ \begin{array}{c} N(1)-Al(1)-N(2) & 83.4(1) & N(1)-Al(1)-N(3) & 81.5(1) & N(1)-Al(1)-N(4) & 105.5(1) & N(3)-Al(1)-N(4) & 105.5(1) & N(3)-Al(1)-N(4) & 86.5(1)-Al(2)-N(6) & 105.0(1) & N(3)-Al(3)-N(4) & 92.1(1) & N(3)-Al(3)-N(6) & 107.5(1) & N(3)-Al(3)-N(6) & 107.5(1) & N(3)-Al(3)-N(6) & 107.5(1) & N(3)-Al(3)-N(6) & 107.5(1) & N(3)-Al(4)-N(5) & 107.5(1) & 115.2(1) & N(5)-Al(5)-N(6) & 102.9(1) & 112.5(1) & 115.2(1) & N(5)-Al(5)-N(6) & 102.9(1) & 112.5(1) & 115.2(1) & 115.2(1) & 112.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 122.5(1) & 123.5(2) & 127.5(2) & 117.5(2) & Al(4)-N(3)-C(5) & 117.5(2) & Al(3)-N(3)-Al(4) & 165.5(2) & 117.5(2) & Al(3)-N(3)-Al(4) & 165.5(2) & 114.5(2)-N(5)-C(1) & 113.5(2) & 105.5(1)-C(1) & 113.5(2) & 105.5(1)-C(1) & 113.5(2) & 105.5(1)-C(1) & 113.5(2) & 105.5(1)-C(1) & 113.5(2)-N(6)-C(1) & 113.5(2)-N(6)-C($                                                                                                                                         | 78(6)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 5(1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 0(1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.2(1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 6(1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ••(1)   |
| $\begin{array}{c} A1(2)-N(1)-A1(4) & 108.2(1) & A1(2)-N(1)-C(1) & 105.7(2) & A1(4)-N(1)-C(1) & 1124\\ A1(1)-N(2)-C(3) & 96.0(2) & A1(1)-N(2)-C(4) & 118.6(4) & A1(1)-N(2)-C(5) & 112\\ C(3)-N(2)-C(4) & 111.8(3) & C(3)-N(2)-C(5) & 107.8(3) & C(4)-N(2)-C(5) & 109\\ A1(1)-N(3)-A1(3) & 88.1(1) & A1(1)-N(3)-C(6) & 117.9(3) & A1(3)-N(3)-A1(4) & 116\\ A1(3)-N(3)-C(6) & 123.3(3) & A1(4)-N(3)-C(6) & 114.7(2) & A1(1)-N(3)-A1(4) & 86\\ A1(1)-N(4)-A1(3) & 89.6(1) & A1(1)-N(4)-C(9) & 113.0(3) & A1(3)-N(4)-C(9) & 113\\ A1(4)-N(5)-A1(5) & 109.4(1) & A1(4)-N(5)-C(12) & 113.0(3) & A1(3)-N(4)-C(9) & 113\\ A1(2)-N(6)-A1(3) & 108.2(1) & A1(2)-N(6)-A1(5) & 109.6(1) & A1(2)-N(6)-C(15) & 108\\ A1(3)-N(6)-A1(5) & 105.4(1) & A1(3)-N(6)-C(15) & 111.1(3) & A1(5)-N(6)-C(15) & 113.0(3) & A1(5)-N$                                                                                                                                 | 8(2)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 6(3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5(3)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2(3)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5(1)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3(1)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6(3)    |
| AI(3)-N(6)-AI(5) 105.4(1) $AI(3)-N(6)-C(15)$ 111.1(3) $AI(5)-N(6)-C(15)$ 113.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7(3)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .7(3)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| N(1)-C(1)-C(2) 112.9(3) $N(1)-C(1)-C(3)$ 107.7(2) $C(2)-C(1)-C(3)$ 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .6(3)   |
| N(2)-C(3)-C(1) 110.9(3) $N(3)-C(6)-C(7)$ 112.1(3) $N(3)-C(6)-C(8)$ 111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .6(3)   |
| C(7)-C(6)-C(8) 109.7(3) N(4)-C(9)-C(10) 111.7(3) N(4)-C(9)-C(11) 109.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .2(3)   |
| C(10)-C(11) 110.6(3) N(5)-C(12)-C(13) 111.3(3) N(5)-C(12)-C(14) 115.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0(4)   |
| C(13)-C(12)-C(14) 112.0(4) N(6)-C(15)-C(16) 115.0(4) N(6)-C(15)-C(17) 111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .8(3)   |
| C(16)-C(15)-C(17) 108.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Deviation of the atoms from the least-squares $(\hat{A})$ for $(Alm)_2$ rings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| A1(1) N(3) A1(3) N(4) A1(1) N(1) A1(4) N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| - 0.12 C.13 - 0.14 0.13 - 0.21 C.24 - C.25 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |

be formally derived from the hexameric "closed cage", observed in compounds of the type  $(HAINR)_6$  (R = i-Pr [1], n-Pr [6]) or  $(XAIN-i-Pr)_6$  (X = Cl, CH<sub>3</sub> [7]), in which two opposite transverse Al—N bonds are broken. The "open cage" is built up of four six-membered rings,  $(AIN)_3$ , in the boat conformation and of two nearly planar four-membered rings,  $(AIN)_2$ , see Table 6.

The two LiH molecules are complexed to the cage (which may be regarded as an anion with formal charge 2—) through the Al(1)—H'(Al1)—Li' and the Al(1')—H'(Al1')—Li hydrogen bridges. The tetrahedral coordination of the lithium atom is completed by the N(3) atom of the cage framework and by the side nitrogens N(4) and N(2'). The interactions between Li and these side nitro-

| Bond lengths (A) an       | nd angles (°)  |                      |          |                        |                       |                  |
|---------------------------|----------------|----------------------|----------|------------------------|-----------------------|------------------|
| AI(1)-%(1)                | 1,898(7)       | AL(1)-N(5            | )        | 1.891(7)               | AL(2)-N(1)            | 1,947(8)         |
| A1(2)-N(3)                | 1.851(7)       | Al(2)-N(5            | • >      | 1.931(7)               | A1(3)-N(3)            | 1.845(6)         |
| AL(3)-N(5)                | 1.914(8)       | A1(3)-N(1            | • )      | 1.930(7)               | N(1)-C(1)             | 1.510(11)        |
| N(2)-C(3)                 | 1.481(12)      | \$(2)-0(4)           |          | 1.441(13)              | N(2)-C(5)             | 1.495(15)        |
| N(3)-C(6)                 | 1.511(11)      | %(4)−C(8)            |          | 1.39(2)                | N(4)-C(9)             | 1.33(3)          |
| N(4)-C(10)                | 1.37(3)        | N(5)-C(11            | )        | 1.493(10)              | N(6)-C(13)            | 1.501(15)        |
| N(6) - C(14)              | 1.29(3)        | N(6)-C(15            | )        | 1.47(3)                | C(1)-C(2)             | 1.523(17)        |
| C(2)-C(3)                 | 1,507(15)      | C(6)-C(7)            |          | 1.462(16)              | C(7)-C(8)             | 1.45(3)          |
| C(11)-C(12)               | 1.500(11)      | C(12)-C(1)           | 3)       | 1.530(13)              |                       |                  |
| Li-N(2')                  | 2.19(2)        | Li-N(3)              |          | 2.69(2)                | Li = N(4)             | 2.12(2)          |
| Li-H'(AL1')               | 1.92(8)        | Al(1)-H'(            | ALT)     | 1.52(9)                | AI(1)-H''(AI1)        | 1.54(7)          |
| A1(2)-H(A12)              | 1.49(7)        | A1(3)-H(A)           | 13)      | 1.47(8)                |                       | 2.0-(7)          |
| N(1) = A(1) = N(5)        | 109 0(2)       | N(1)-11(2)           | )->(3)   | 116 1(2)               | N(+)-11(2)-N(2))      | 0( 0(2)          |
| N(3) = A1(7) = N(5')      | 110 4(2)       | N(3)_11(3)           | )=x(3)   | 113 8(2)               | N(1) = A1(2) = N(3)   | 90.8(2)          |
| $N(5) = AI(3) = N(1^{1})$ | 91 8(2)        | AL(1)-N(1)           | (-1)(7)  | 116 A(x)               | A1(+) = N(+) = A1(-)  | 103.3(2)         |
| A1(2) - N(1) - A1(3')     | 88.2(1)        | AI(1) - N(1)         | -c(1)    | 108.8(3)               | AI(1) - S(1) - RI(3)  | 107 9(4)         |
| $A1(3^{+}) - N(1) - C(1)$ | 119.4(4)       | $\Delta 1(7) - N(3)$ | -a1(3)   | 114.4(1)               | A1(2) - N(3) - C(6)   | $107 \cdot 3(4)$ |
| A1(3) - N(3) - C(6)       | 112.1(4)       | AI(3)~N(3)           | )-1.1    | 95.9(3)                | AI(2) - N(3) - 1i     | 114.5(4)         |
| Li - N(3) - C(6)          | 101.1(3)       | AI(1) - N(5)         | )-AI(3)  | 120.0(1)               | AI(1) - N(5) - AI(2') | 110.0(1)         |
| AL(3)-N(5)-AL(2')         | 89.1(1)        | AL(1)-N(5)           | -C(11)   | 110,1(3)               | AI(3) - N(5) - C(11)  | 114.7(4)         |
| A1(2')-N(5)-C(11)         | 111.1(4)       | N(1)-C(1)-           | -C(2)    | 116.6(4)               | C(1)-C(2)-C(3)        | 116-0(5)         |
| C(2)-C(3)-N(2)            | 117.8(4)       | C(3)-N(2)-           | -C(4)    | 109.5(4)               | C(3) - x(2) - C(5)    | 108.2(4)         |
| C(3)-N(2)-Li'             | 124.4(4)       | C(4) - N(2) -        | Li '     | 105.9(4)               | C(5) - N(2) - Li'     | 98.4(4)          |
| C(4) - N(2) - C(5)        | 109.5(4)       | N(3)-C(6)-           | ·C(7)    | 118.0(5)               | C(6) - C(7) - C(8)    | 122.7(8)         |
| C(7)-C(8)~N(4)            | 123.7(7)       | C(8)-N(4)-           | ·C(9)    | 110.6(11)              | C(8) - N(4) - C(10)   | 109.3(11)        |
| C(8)-N(4)-Li              | 103.7(3)       | C(9)-N(4)-           | ·C(10)   | 100,4(9)               | C(9)-N(4)-Li          | 108.2(3)         |
| C(10)-N(4)-Li             | 124.5(4)       | N(5)-C(11)           | -C(12)   | 115,4(3)               | C(11)-C(12)-C(13)     | 113,4(3)         |
| C(12)-C(13)-N(6)          | 112.0(4)       | C(13)~N(6)           | -C(14)   | 115.1(8)               | C(13)-N(6)-C(15)      | 107.6(7)         |
| C(14)-X(6)-C(15)          | 108.7(7)       |                      |          |                        |                       |                  |
| N(2')-LI-N(3)             | 124.1(4)       | N(2')-LI-N           | (4)      | 114.6(4)               | N(3) - Li - N(4)      | 103.1(4)         |
| N(2')-Li-H'(All')         | 98(3)          | Al(1')-H'(           | All')-Li | 122(3)                 | N(1)-Al(1)-H'(All)    | 109(3)           |
| N(1)-Al(1)-H''(Al1)       | 108(2)         | N(5)-Al(1)           | -H'(Al1) | 104(3)                 | N(5)-Al(1)-H''(Al1)   | 118(2)           |
| H'(Al1)-Al(1)-H''(Al      | 1)110(2)       | N(1)-A1(2)           | -H(A12)  | 105(2-)                | N(3)-A1(2)-H(A12)     | 117(3)           |
| N(5')-Al(2)-H(Al2)        | 115(3)         | N(3)-A1(3)           | -H(A13)  | 113(2)                 | N(5)-A1(3)-4(A13)     | 113(3)           |
| N(1')-Al(3)-H(Al3)        | 118(3)         |                      | ·        |                        |                       |                  |
| Deviation of the ato:     | ms from the le | ast-squares pl       | anes (Å) | for (AlN) <sub>2</sub> | ring                  |                  |
|                           | 1              | (2) N(1)             | A1(3')   | N(5 <sup>°</sup> )     |                       |                  |
|                           | - 0.           | .01 0.01             | - 0.01   | 0.01                   |                       |                  |

### GEOMETRICAL PARAMETERS FOR COMPOUND II

gen atoms constrain the related  $-(CH_2)_3N(CH_3)_2$  substituents to assume a coiled conformation, while the remaining crystallographically-independent substituent displays a fully extended conformation.

In II, the shortest Al—N bond distances (those at N(3), 1.845(6) and 1.851(7) Å, and at Al(1), 1.891(7) and 1.898(7) Å) are shared by two hexagonal (AlN)<sub>3</sub> rings; all the other Al—N bond distances, ranging from 1.914(8) to 1.947(8) Å, are shared by one hexagonal and one square (AlN)<sub>2</sub> ring. A similar trend has been observed in (HAlN—n-Pr)<sub>8</sub> [6].

The overall average Al—N bond distance, involving four-coordinate atoms only, is 1.916(11) Å in I and 1.901(13) Å in II; these values agree with the corresponding ones found in other compounds of this series [1,3,5,6]. The other bond distances display the usual values; the shortening of some N—C and C—C distances observed in both compounds, as well as of some Al—H distances in I, must be ascribed to the strong thermal disorder.

Both of the above structures show that when amines with  $-N(CH_3)_2$  terminal groups are used in the synthesis of PIA, the tendency of this nitrogen atom to reach four-coordination leads preferentially to open cages, generally with  $H_{act}/Al$  ratios greater than unity, as clearly revealed in previous work [11]. For instance, the preparation procedure of I ( $H_{act}/Al = 1.4$ ) leads to the hexamer (HAINR)<sub>6</sub> ( $H_{act}/Al = 1$ ) if 2-dimethylamino-isopropylamine is replaced by isopropylamine. Moreover, PIA obtained from substituted primary amines show an increasing ability to add other molecules: as a result, no LiH derivative of the hexamer (HANR)<sub>6</sub> has been obtained so far.

### Acknowledgement

The authors thank the Presidency of ASSORENI for allowing publication of this paper.

### References

- 1 M. Cesari, G. Perego, G. Del Piero, S. Cucinella and E. Cernia, J. Organometal. Chem., 78 (1974) 203.
- 2 G. Perego, M. Cesari, G. Del Piero, A. Balducci and E. Cernia, J. Organometal. Chem., 87 (1975) 33.
- 3 M. Cesari, G. Perego, G. Del Piero and M. Corbellini, J. Organometal. Chem., 87 (1975) 43.
- 4 G. Perego, G. Del Piero, M. Cesari, A. Zazzetta and G. Dozzi, J. Organometal. Chem., 87 (1975) 53.
- 5 G. Del Piero, M. Cesari, G. Dozzi and A. Mazzei, J. Organometal. Chem., 129 (1977) 281.
- 6 G. Del Piero, M. Cesari, G. Perego, S. Cucinella and E. Cernia, J. Organometal. Chem., 129 (1977) 289.
- 7 G. Del Pierro, G. Perego, S. Cucinella, M. Cesari and A. Mazzei, J. Organometal. Chem., 136 (1977) 13.
- 8 C. Perego, G. Del Piero, M. Corbellini and M. Bruzzone, J. Organometal. Chem., 136 (1977) 301.
- 9 G. Del Piero, M. Cesari, S. Cucinella and A. Mazzei, J. Organometal. Chem., 137 (1977) 265.
- 10 G. Del Piero, S. Cucinella and M. Cesari, J. Organometal. Chem., 173 (1979) 263.
- 11 G. Dozzi, C. Busetto, T. Salvatori and S. Cucinella, J. Organometal. Chem., 192 (1980) 17.
- 12 W. Hoppe, Acta Crystallogr. A, 25 (1969) 67.
- 13 P. Main, M.M. Woolfson and G. Germain, Computer Program MULTAN, 1974; G. Germain, P. Main and M.M. Woolfson, Acta Crystallogr. B, 26 (1970) 274.
- 14 D.W.J. Cruickshank in J.S. Rollet (Ed.), Computing Methods in Crystallography, Pergamon, London, 1965, p. 114.
- 15 D.T. Cromer and B. Mann, Acta Crystallogr. A, 24 (1968) 321.
- 16 R.F. Stewart, E.R. Davidson and W.R. Simpson, J. Chem. Phys., 42 (1965) 3175.
- 17 C.K. Johnson, ORTEP, 1965, Oak Ridge National Laboratory, Report ORNL-3794, Oak Ridge, Tennessee.
- 18 A. Immirzi, Ric. Sci., 37 (1967) 847; ibid., 37 (1967) 850; J. Appl. Cryst., 6 (1973) 247.